Identification of Chinese Herbal Medicines from Zingiberaceae Family Using Feature Extraction and Cascade Classifier Based on Response Signals from E-Nose
نویسندگان
چکیده
Identification of Chinese herbal medicines (CHMs) by human experience is often inaccurate because individual ability and external factors may influence the outcome. However, it might be promising to employ an electronic nose (E-nose) to identify them. This paper presents a rapid and reliable method for identification of ten different species of CHMs from Zingiberaceae family based on their response signals from E-nose. Ten Zingiberaceae CHMs were measured and their maximum response values were analyzed by principal component analysis (PCA). Result shows that E Zhu (Curcuma phaeocaulis Val.) and Yi Zhi (Alpinia oxyphylla Miq.) could not be distinguished completely by PCA. Two solutions were proposed: (i) using BestFirst+CfsSubsetEval (BC) method to extract more discriminative features to select sensors with higher contribution rate and remove the redundant signals; (ii) employing a novel cascade classifier with two stages to enhance the distinguishing-positive rate (DPR). Based on these strategies, six features were extracted and used in different stages of the cascade classifier with higher DPRs.
منابع مشابه
A New Method for Classification of Chinese Herbal Medicines Based on Local Tangent Space Alignment and LDA
Controlling the quality of Chinese herbal medicines (CHMs) is a challenging issue due to the complex and diverge specification of components in herbs. The main purpose of this study is to develop an algorithm for species identification of CHMs. An electronic nose (E-nose) was employed to collect the smell print of different groups of CHMs with different kinds and production batches. A combinati...
متن کاملIdentification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges
This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced mach...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014